نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما

به صفحه فایل نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما خوش آمدید.

قبل از اینکه به صفحه دانلود بروید پیشنهاد می کنیم توضیحات نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما را در زیر مشاهده نمایید.

سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد

دسته بندی ریاضی
فرمت فایل doc
تعداد صفحات 29
حجم فایل 27 کیلو بایت

نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما

سال جهانی ریاضیات بود و مایل بودم که مثل بسیاری از عاشقان ریاضی راجع به چیستی ریاضی چیزی تهیه کنم. این کار عملی شد اما از همان موقع باورگونه ای در ذهنم ایجاد شد که تا مدتها جرأت بیان صریح آن را حتی برای خودم نداشتم، چرا که با مسیری که خود در آن قدم گذاشته ام، تناقص داشت. این فکر همواره مرا آزار داده است. تصمیم گرفته بودم که روی این فکر کار جدی انجام داده و آن را در کنفرانس ریاضی در اهواز مطرح کنم ولی میسر نشد. بنابراین بنا را بر این گذاشتم که در تابستان امسال روی این مطلب مطالعات جدی انجام دهم و ثمره آن را در سی و ششمسن کنفرانس ریاضی در یزد مطرح کنم. چون کار اصلی را به تعطیلات تابستان موکول کرده بودم، مقدور نبود که خلاصه مقاله و خود مقاله را به موقع به کنفرانس ارسال کنم. بعلاوه عنوان اولیه مقاله (شرایط کنونی و وظایف انجمن ریاضی ایران) موجب سوء تعبیر نماینده انجمن شد و نظرشان این بود که مطلب بایستی در میزگرد مطرح شود تا بتوان به آن پاسخ داد، در حالی که مقاله عمدتاً در جهت تقویت انجمن است، مضافا این که میزگرد جای ارائه مقاله نیست. به هر حال این تصمیم مرا آزرده خاطر کرد و به دلیل تردید در انجام کار، مطالعاتم دچار اختلال شد. اما در هر صورت تصمیم گرفتم که این ایده را هر چند به صورت ناقص و فشرده و به شکل آزاد، در کنفرانس ارائه کنم.

حقیقتی آشکار است که هر پدیده ای، تاریخی دارد و برای این که تصمیمی برای حال و آینده آن پدیده بگیریم بایستی تاریخ گذشته اش را بدانیم. اگر بخواهیم به زبان ریاضی تشبیه کنیم، مسیر حرکت یک پدیده مثل یک منحنی همواری است که جهت حرکت آن در هر لحظه، به مسیری که تا آن لحظه طی گرده است بستگی دارد و اگر منحنی را یک منحنی هدفدار تصور کنیم (که در مسائل اجتماعی این چنین است) مسیر گذشته و هدف نهایی جهت گیری بعدی را مشخص خواهد کرد. اگر با توجه به مسیر گذشته جهت منحنی در راستای هدف نباشد، آن نقطه، نقطه عطف خواهد بود. در بخش اول این نوشتار قصد این است که نشان دهیم در یک نقطه عطف از تاریخ ریاضیات ایستاده ایم.
این ادعا که «ما در یک نقطه عطف از تاریخ ریاضیات قرار داریم»، یک ادعای جسارت آمیزی است و نیاز به مطالعه وسیع درباره تاریخ ریاضیات و وضعیت ریاضی در دنیای امروز بویژه اروپا که محور تحولات در این رمینه است، دارد. قسمت اول ،یعنی تاریخ ریاضیات، با توجه به منابع قابل قبول تا حدی انجام شدنی است، اما قسمت دوم احتیاج به زمان بیشتری دارد و از این جهت کار خود را ناقص می دانم.

نگاهی گذرا به تاریخ ریاضی: مطمئنا تاریخ ریاضی همزمان با تاریخ اندیشه انسانی است. لذا نمی توان تاریخ دقیقی برای آغاز آن متصور شد. اسناد تاریخی نشان می دهند که شرق از قبیل چین, هند, ایران, بابل و مصر به تبع تمدنهای اولیه در آن، پیشتر از غرب صاحب علوم و از جمله ریاضیات نسبتا پیشرفته ای بودند. مقدمه «پاپیروس رایند» (1650 ق م ) که یکی از قدیمترین اسناد تاریخ ریاضی است، با توجه به کندی تحولات در عهد باستان، نشان می دهد که در اوائل هزاره دوم قبل از میلاد تمدنهای شرق دارای ریاضیاتی پیشرفته بوده اند. در این سند چنین آمده است :
«به جرئت می توان گفت که بارزترین مشخصه شعور انسان که نشان دهنده درجه تمدن هر ملت است همان قدرت استدلال کردن است، و به طور کلی این قدرت به بهترین وجهی می تواند در مهارت های ریاضی افراد آن ملت به نمایش گذاشته شود»
این سند همچنین نشان می دهد که برخلاف نظر برخی تاریخ نویسان، ریاضیات قبل از تمدن یونان باستان عمدتاً تجربی و شهودی نبوده، و به نحو قابل قبولی با استدلال همراه بوده است.

در اثر ارتباطاتی که یونیان با امپراطوری ایران، بابل و مصر داشتند و به ویژه پس از کشورگشاییهای اسکندر، یونانیان تقریبا بر همه علوم زمان خود احاطه پیدا کردند و تقریبا در همه زمینه ها و از جمله ریاضیات آثاری مدون را بوجود آوردند که تا قرنها بر جهان اندیشه حکومت می کردند. به نظر می رسد كه تمایل به منطق و استدلال در قرون قبل از میلاد در یونان به اوج خود رسید. به روایت تاریخ نویسان ریاضی، اولین تلاش خوب برای استدلال مسایل ریاضی توسط تالس در سده ششم قبل از میلاد و پس از آن توسط شاگردش فیثاغورس و بعد از آن در قرون سوم ق.م. توسط اقلیدس در كتاب اصول اقلیدس به صورت مدون درآمد. كتاب اصول اقلیدس گرچه شامل مقالاتی در باره اعداد است اما بیشتر مسایل مربوط به اعداد از زاویه هندسی مورد توجه قرار گرفته اند. مشابه كار اقلیدس را «نیكوماخوس» (اواخر قرن اول بعد از میلاد) در زمینه حساب انجام داد.
رسالات منطق «ارسطو» (قرن چهارم ق.م) كه بعدها به «ارغنون» مشهور شد، و اثری است ریاضی- فلسفی، نیز از جمله آثاری است كه بیش از هزار سال بر جهان اندیشه، از جمله ریاضی، تاثیرات عمیق گذاشت. كارهای «ارشمیدس» (سده سوم قبل از میلاد، برخی او را یكی از بزرگترین ریاضیدانان همه اعصار نامیده اند ) همواره الهام بخش ریاضیات كاربردی بوده است و تا قرن نوزدهم نفوذ عمیقی در ریاضیدانان به ویژه در زمینه آنالیز داشته است .

طی قرون بعد از میلاد به دلیل جنگ های داخلی، تسلط امپراطوری روم بر یونان، سوزاندن كتابخانه ها از جمله کتابخانه بزرگ اسکندریه و مهمتر از همه افتادن علوم در زندان خرافی كلیسا، به تدریج و به خصوص پس از تسلط اسلام بر تمدنهای بزرگ آن زمان در قرن هفتم، رسالت حفظ و انتشار علوم بر عهده ممالك اسلامی افتاد. به روایت برخی كتابهای تاریخی اولین كسی كه به ترجمه آثار یونانی دست زد «ابن مقفع» دانشمند ایرانی قرن دوم هجری ( قرن نهم میلادی ) بود. وی اولین بار فن منطق را به عربی ترجمه كرد و مسلمانان را به این دانش مسلح كرد. پس از آن جریانی شكل گرفت كه در تاریخ به نهضت ترجمه معروف است. در این جا نقش یک انجمن پنهانی به اسم «اخوان الصفا» كه در قرن چهارم هجری شكل گرفت بسیار بارز است. نتیجه كار این انجمن كه متشكل از علماء و دانشمندان اسلامی بود رساله هایی است كه مشتمل بر 51 مقاله در زمینه های مختلف علوم طبیعی ، ریاضی، الهی و مسائل عقلی و غیره می باشد. از میان دانشمندانی كه تاثیرات زیادی را روی نسل های بعدی در زمینه ریاضی گذاشتند می توان از خوارزمی، ماهانی، ابن قروه، کرجی، بوزجانی، خیام، ابن عزرا، كاشانی و خواجه نصیرالدین طوسی نام برد.
البته در این دوره كه به دوره تاریك اندیشی غرب مشهور است و تا حدود سده چهارده میلادی ادامه داشته است، در امپراطوری روم شرقی (بیزانس) كه به طور طبیعی بیشتر تحت تاثیر فرهنگ یونانی بود، علوم و از جمله ریاضیات به حركت خود، به كندی، ادامه داد. در این میان می توان از «بوئتیوس» (ح 510 م) نام برد كه معلومات ریاضی دانانی چون «اقلیدس»، «نیكوماخوس» و «ثاون» را در كتابی به نام دو مقاله در باب اصول حساب گرداوری کرد که در همه مدارس قرون وسطی تدریس می شد. برجسته ترین ریاضیدان قرون وسطی در غرب، «فیبوناتچی» (1202 م) بود كه تا حدود زیادی تحت تاثیر کتاب «جبر و مقابله» اثر مهم ریاضیدان بزرگ ایرانی (قرن نهم میلادی )، یعنی «خوارزمی»، بوده است.
در كتاب «صورتبندی مدرنیته و پست مدرنیته»، قرون پس از دوره تاریك اندیشی غرب، به چهار دوره به صورت زیر تقسیم شده است:
1- دوره رنسانس یا نوزایی، از قرن چهاردهم؛
2- جنبش اصلاح دینی، در قرن شانزدهم؛
3- عصر روشنگری، از اواخر قرن هفدهم تا اوایل قرن هیجدهم؛
4- انقلاب صنعتی، از نیمه دوم قرن هیجدهم تا نیمه قرن نوزدهم؛
به نظر می رسد این تقسیم بندی در مورد تاریخ تحول ریاضیات در غرب نیز، با مختصر تفاوتی، صدق می كند.

فایل دیگر:  دانلود تحقیق در مورد فلسفه و مسیحیت

جرقه های دوره نوزایی در ایتالیا زده شد. در این دوره در واقع علوم عهد یونان باستان و تمدن اسلامی ترجمه و بازیافت شد. شاید بتوان گفت این كار در زمینه ریاضیات در قرن سیزدهم با كارهای فبیوناتچی شروع شد. یه این ترتیب، دوره نوزایی در ریاضیات از قرن سیزدهم شروع شده است که با توجه به ماهیت ریاضی تا حدی طبیعی است. این نکته از این جهت تذكر داده شد تا توجه كنیم كه تحولات در علوم گرچه به مقدار زیاد به تحولات اجتماعی وابسته است، اما بر آن منطبق نیست و گاه خود می تواند زمینه ساز تحول اجتماعی باشد.
در دوره اول تحول ریاضی در غرب كه می توان گفت از قرن سیزدهم میلادی تا نیمه قرن شانزدهم ادامه دارد، اگر چه ریاضیات پیشرفت زیادی كرد اما خلاقیت و نوآوری چندانی در آن صورت نگرفت.

از نیمه دوم قرن شانزدهم تحت تأثیر گشایشی كه از طریق اصلاح دینی و اجتماعی ( با پرچمداری مصلحینی چون «مارتین لوتر»، «توماس مونتسر»، «هولدریخ تسوینگلی»، «جان کالون» و دیگران ) در غرب صورت گرفت، شاهد كارهای خلاقانه در ریاضیات هستیم. می توان گفت كه این جریان از «نپر» و ابداع لگاریتم شروع شد و با توجه به نیاز آن زمان به كارهای محاسباتی سنگین به شدت مورد اقبال قرار گرفت. سده های هفدهم و هیجدهم شاهد ریاضیدانان بزرگی با كارهای بزرگ در زمینه های مختلف است. «گالیله» و «كپلر» در زمینه مكانیك آسمان، «پاسكال» در زمینه هندسه تصویری و پایه گذاری نظریه احتمال (به همراه ریاضیدان بزرگ فرانسوی، یعنی «فرما» )، «دكارت» در زمینه ابداع هندسه تحلیلی ( ظاهراً «فرما» نیز همزمان با او به هندسه تحلیلی رسیده بود)، «فرما» در زمینه های مختلف ریاضی و به ویژه در زمینه نظریه اعداد و ایجاد زمینه برای پیشرفت جبر و آنالیز و بالاخره «كاوالیری»، «جان والیس» و «باروی» در بسترسازی مناسب برای كارهای اساسی كه بعداً در قرن هیجدهم توسط «نیوتن» و «لایب نیتس» صورت گرفت. به این نامها بایستی نام ریاضی دان بزرگ هلندی قرن هفدهم یعنی «كریستین هویگنس» را هم اضافه كنیم كه كارهایش باعث پیشرفتهای محسوسی در علم نجوم و احتمالات و اختراعات صنعتی از جمله اختراع ساعت پاندولی شد.

اوایل قرن هیجدهم نقطه عطفی در تاریخ ریاضیات است. در اوایل این قرن نیوتن و لایب نیتس به طور همزمان و با استفاده از كارهای كسانی چون كاوالیری، جان والیس و باروی كه پیش از این انجام شده بود، حساب دیفرانسیل و انتگرال را ابداع كردند. در نیمه اول این قرن شاهد ریاضیدانان بزرگ دیگری نظیر برادران برنولی ( سه برادر ریاضیدان كه در حل مسایل ریاضی خستگی ناپذیر بودند )، «تیلر»، «مكلورن» و دیگران هستیم.
متعاقب پیشرفتهای ریاضی و به تبع آن سایر علوم مرتبط با ریاضی و با توجه به نیاز زمان، اختراعاتی در زمینه های مختلف شروع شد و نطفه های انقلاب صنعتی در غرب در نیمه دوم قرن هیجدهم شكل گرفت. این انقلاب صنغتی به دنبال خود تغییراتی در دیدگاههای فلسفی و اجتماعی غرب گذاشت. اگر چه به روایت تاریخ، انقلاب صنعتی از انگلیس شروع شده بود ولی در فرانسه با انقلاب اجتماعی همراه شد و توانست تأثیرات شگرفی را در بینش جهان غرب بگذارد. ریاضیدانان این دوره تحت تأثیر همین بینش توانستند تابوهای ریاضی را در همه زمینه ها بشكنند. ابتدا به دنبال ابهاماتی كه در طرح «بینهایت كوچكها» از طرف نیوتن و لایب نیتس در بحث حساب دیفرانسیل و انتگرال پیش آمده بود، مباحثات و مجادلات زیادی در این مورد صورت گرفت. در اثر تلاش ریاضیدانانی چون «اویلر»، «دالامبر»، «بولتسانو»، «وایراشتراوس»، «لاگرانژ»، «ریمان» و به خصوص «كوشی» برای اجتناب از این شبهات، از دل هندسه، آنالیز سر برآورد و به اوج خود رسید. از سوی دیگر نیز با تلاش ریاضیدانی چون «واندرموند»، «لاگرانژ»، «گاوس»، «آبل»، «گالوا»، «همیلتن» و دیگران از دل حساب و نظریه اعداد شاخه های مختلف جبر شكل گرفت. در این میان كارهای گاوس، آبل و به ویژه گالوا بسیار بدیع بود و كار همیلتن به جهت معرفی حلقه های تعویض ناپذیر، به دلیل ساختار شكنی، بسیار مؤثر بود.
جریان انقلابی دیگری كه در این زمان شكل گرفت، شكستن تابوی هندسه اقلیدسی بود. به نقل از اسناد تاریخی اولین كسی كه با طرد اصل پنجم اقلیدس به هندسه نااقلیدسی نزدیك شد «گاوس» ریاضیدان بزرگ آلمانی بود که بهر دلیل آن را انتشار نداد. کمی بعد هندسه نااقلیدسی به صورت مستقل توسط «یوهان بایایی» (1802-1860) ریاضی دان مجاری و «لباچفسكی» (1793- 1856) ریاضی دان روسی اعلام وجود كرد. چندی بعد «ریمان» با جرح و تعدیل دیگری در اصل پنجم اقلیدس، هندسه دیگری را كه به هندسه بیضوی موسوم است، معرفی كرد.

 


از این که از سایت ما اقدام به دانلود فایل ” نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما ” نمودید تشکر می کنیم

فایل – نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما – با برچسب های زیر مشخص گردیده است:
نشانه,نقطه عطف,تاریخ ریاضی,مقاله,پژوهش,تحقیق,پروژه,پایان نامه,دانلود مقاله,دانلود پژوهش,دانلود تحقیق,دانلود پروژه,دانلود پایان نامه,مقاله نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما,پژوهش نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما,تحقیق نشانه های یك نقطه عطف در تاریخ ریاضی و وظایف ما,پروژه نشانه های یك نقطه عطف در تاریخ ری

جدیدترین و بهترین فایل های موجود در اینترنت برای استفاده کاربران در همین سایت گردآوری شده است. در همه زمینه ها می توانید تنها با یک جست و جو فایل خود را پیدا کرده و به سادگی دانلود نمایید. هنگام جست و جوی فایل از کلمات کلیدی موضوع یا عنوان مورد نظر خود استفاده نمایید.

جعبه دانلود

برای دانلود فایل روی دکمه زیر کلیک کنید
دریافت فایل


شما ممکن است این را هم بپسندید

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *